

1

Exercise-1
Programs on Arithmetic Operations, Suppressing Output, Built-in
Functions, Variables
Arithmetic Operations:

Operator Command Details

Addition

+ Addition

sum Sum of array elements

cumsum Cumulative sum

movsum Moving sum

Subtraction
- Subtraction

diff Differences and approximate derivatives

Multiplication

.* Multiplication

* Matrix multiplication

prod Product of array elements

cumprod Cumulative product

Division

./ Right array division

.\ Left array division

/ Solve systems of linear equations xA = B for x

\ Solve systems of linear equations Ax = B for x

Powers
.^ Element-wise power

^ Matrix power

 Built-in Functions:

 (i) Modulo Division and Rounding
mod Remainder after division (modulo operation)

rem Remainder after division

ceil Round toward positive infinity

floor Round toward negative infinity

round Round to nearest decimal or integer

(ii) Trigonometry

sin Sine of argument in radians tan Tangent of argument in radians

sind Sine of argument in degrees tand Tangent of argument in degrees

sinpi Compute sin(X*pi) accurately atan Inverse tangent in radians

asin Inverse sine in radians atand Inverse tangent in degrees

asind Inverse sine in degrees tanh Hyperbolic tangent

sinh Hyperbolic sine atanh Inverse hyperbolic tangent

asinh Inverse hyperbolic sine csc Cosecant of input angle in radians

cos Cosine of argument in radians cscd Cosecant of argument in degrees

cosd Cosine of argument in degrees acsc Inverse cosecant in radians

cospi Compute cos(X*pi) accurately acscd Inverse cosecant in degrees

2

acos Inverse cosine in radians csch Hyperbolic cosecant

acosd Inverse cosine in degrees acsch Inverse hyperbolic cosecant

cosh Hyperbolic cosine cot Cotangent of angle in radians

acosh Inverse hyperbolic cosine cotd Cotangent of argument in degrees

sec Secant of angle in radians acot Inverse cotangent in radians

secd Secant of argument in degrees acotd Inverse cotangent in degrees

asec Inverse secant in radians coth Hyperbolic cotangent

asecd Inverse secant in degrees acoth Inverse hyperbolic cotangent

sech Hyperbolic secant

asech Inverse hyperbolic secant

hypot Square root of sum of squares (hypotenuse)

(ii)Functions

exp Exponential

log Natural logarithm

log10 Common logarithm (base 10)

log2 Base 2 logarithm and floating-point number dissection

sqrt Square root

3

MATLAB Programs
1 Calculate

(i) 072tan
)6/cos(

)2.0sin(





 (ii)  
02

02
200

20cos

37sin
15cos64tan 

(i)
MATLAB Code:
sinpi(0.2)/cospi(1/6)+tan(72)
Output:
ans =
 0.4163
(ii)
MATLAB Code:
(tan(64)*cos(15))^2+(sin(37))^2/(cos(20))^2
Output:
ans =
 5.6682

2 Define the variable z as z= 4.5, then evaluate:

(i) 7.803.1621.34.0 24  zzz (ii)    3 23 5.17/23  zz
(i) MATLAB Code:
z=4.5;
 0.4*z^4+3.1*z^2-162.3*z-80.7
Output:
ans =
-584.2500
(ii) MATLAB Code:
z=4.5;
(z^3-23)/(z^2+17.5)^(1/3)
Output:
ans =
 20.3080

3 Define the variable t as t=3.2, the evaluate

(i) 32 81.3
2

1
te t  (ii)

1

266
2

2




t

tt

(i) MATLAB Code:
t=3.2;
exp(2*t)/2-3.81*t^3
Output:
ans =
 176.0764
(ii) MATLAB Code:
t=3.2;
(6*t^2+6*t-2)/(t^2-1)
Output:
ans =
 8.5108

4

4 Define the variables x and y as x= 6.5 and y= 3.8, then evaluate

(i)  
xy

xy
yx




3/222 (ii) 22
2

2
)(

xyx
yx

yx





(i) MATLAB Code:
x= 6.5;
y= 3.8;
(x^2+y^2)^(2/3)+x*y/(y-x)
Output:
ans =
 5.6091
(ii) MATLAB Code:
x= 6.5;
y= 3.8;
sqrt(x+y)/(x-y)^2+2*x^2-x*y^2
Output:
ans =
 -8.9198

5
Define the variables a, b, c and d as c =4.6, d=1.7, a =cd2, and

dc

ac
b




 , then

evaluate

(i) dbd caace)(3  (ii)
b

a
c

b

ct

c

d d 







2

(i) MATLAB Code:
c =4.6;
d=1.7;
a =c*d^2;
b=(c+a)/(c-d);
exp(d-b)+(c+a)^(1/3)-(c*a)^d
Output:
ans =
 -1.0861e+03
(ii) MATLAB Code:
c =4.6;
d=1.7;
a =c*d^2;
b=(c+a)/(c-d);
d/c+(c*t/b)^2-c^d-a/b
Output:
ans =
 -9.4810

6
Write the MATLAB code to find the simple interest using the formula

100

PNR
I 

when P= 1500, N=2.3, R= 3%. Also find total amount.
MATLAB Code:
clc;clear all;
%simple interest
P=input('enter the value of P\n P=');
N=input('enter the value of N\n N=');
R=input('enter the value of R\n R=');
i=(P*N*R)/100;

5

fprintf('The simple interest I=%0.2f\n',i)

Output:
enter the value of P
 P=1500
enter the value of N
 N=2.3
enter the value of R
 R=3
The simple interest I=103.50

7 Write the MATLAB code to find the Compound interest using the formula
n

r
PA 






 

100
1 when P = 2500, n = 3.5, r = 7%. Also find total interest.

MATLAB Code:
clc;clear;
%Compound interest
P=input('enter the value of P\n P=');
N=input('enter the value of N\n N=');
R=input('enter the value of R\n R=');
A=P*(1+R/100)^N;
i=A-P;
fprintf('The Compound interest I=%0.2f\n',i)
Output:
enter the value of P
 P=2500
enter the value of N
 N=7
enter the value of R
 R=3.5
The Compound interest I=680.70

8 Write the MATLAB code to find the Area of the circle with radius 13/1  r
r=pi^(1/3)-1;
area=pi*r^2
Output:
area =
 0.6781

9 Write the MATLAB code to find the slope of the straight line at the point (1, 2) and
horizontal intercept c = 3.
MATLAB Code:
x=1; y=2;c=3;
slope=(y-c)/x
Output:
slope =
 -1

6

10 The monthly payment M of a Mortgage P for n years with fixed annual interest rate r
can be calculated by the formula:

1
12

1

12
1

12
12

12







 







 


n

n

r

rr

PM

Write the MATLAB code to find Determine the monthly payment of 30 years, Rs.
4, 50,000 mortgage with interest rate of 4.2%. Define the variables P, r and n, then
use them in the formula to calculate M.
MATLAB Code:
P=450000; r= 4.2;n=30;
M=P*(r/12)*(1+r/12)^(12*n)/((1+r/12)^(12*n)-1)
Output:
M =
 1.5750e+05
Output:
M =
 1.5750e+05

Outcome:<Write in your own words on learning experience, “what you learn/doing after
completion of this exercise”.>

7

Exercise-2
Programs on Vectors , Matrices, Symbolic Mathematics

Vectors :A vector is a one-dimensional array of numbers. MATLAB allows creating two
types of vectors: Row vectors, Column vectors.

Creating Vectors: Row vectors are created by enclosing the set of elements in square
brackets, using space or comma to delimit the elements. Column vectors are created by
enclosing the set of elements in square brackets, using semicolon to delimit the elements.

Matrix: A matrix is a two-dimensional array of numbers. In MATLAB, you create a matrix
by entering elements in each row using comma or space delimited numbers and using
semicolons to mark the end of each row.

The following table describes its use for this purpose (let us have a matrix A):

Format Purpose
A(:,j) is the jth column of A.
A(i,:) is the ith row of A.
A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.
A(j:k) is A(j), A(j+1),...,A(k).

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k).
A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1),
A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the left side of an
assignment statement, A(:) fills A, preserving its shape from before. In this
case, the right side must contain the same number of elements as A.

Vector, Matrix, and Array Commands: The following table shows various commands used
for working with arrays, matrices and vectors:
Command Purpose Command Purpose

cat Concatenates arrays. eye Creates an identity matrix.
find Finds indices of nonzero

elements.
ones Creates an array of ones.

length Computes number of elements. zeros Creates an array of zeros.
max Returns largest element. cross Computes matrix cross

products.
min Returns smallest element. dot Computes matrix dot products.
prod Product of each column. det Computes determinant of an

array.
size Computes array size. inv Computes inverse of a matrix.
sort Sorts each column. rank Computes rank of a matrix.
sum Sums each column.

8

MATLAB Programs
1

Create a row vector V = [1 3 5 7 -9 10]; and a column vector


























12

10

9

7

3

W

Find the vectors 2V, W2, V2+2V
MATLAB CODE:
V=[1 3 7 -9 10]
Output:
V =
 1 3 7 -9 10
W=[3;-7;9;10;12]
Output:
W =
 3
 -7
 9
 10
 12
2*V
Output:
ans =
 2 6 14 -18 20
W.^2
Output:
ans =
 9
 49
 81
 100
 144
V.^2+2*V
Output:
ans =
 3 15 63 63 120

2 Create a vector with eleven elements from 0 to 10. Take r = 0.5 and create another
vector x = [1, r, r2, r3,...rn]. Find the geometric sum s=1+r+r2+r3+...+r11. Now calculate
the limit 1/(1-r) and compare with ‘s’. Repeat taking n from 0 to 50 and then from 0 to
100.
MATLAB Code:
i=0:10; r=0.5;
x= r.^i
output:
x =

 Columns 1 through 9

 1.0000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078 0.0039

 Columns 10 through 11

9

 0.0020 0.0010

i=0:11; r=0.5;
x= r.^i;
s=sum(x)
output:
s =
 1.9995
d=s-1/(1-r)

d =
 -4.8828e-04

3

(i) Create a matrix





















510943

76510

23412

A

 (ii) Create a sub-matrices 









1094

651
B and 











53

70
C

 (iii) Using MATLAB commands delete 2nd row of the above matrix A and insert the
same row again.

 (iv)Using MATLAB commands delete 3rd and 4th columns of A. Interchange 1st and 2nd
rows of A.

(i) Create a matrix






















510943

76510

23412

A

MATLAB CODE:
A=[-2 1 4 3 2;0 1 5 6 7; 3 4 9 10 -5];
OUTPUT:
A
A =
 -2 1 4 3 2
 0 1 5 6 7
 3 4 9 10 -5

(ii) Create a sub-matrices 









1094

651
B and 











53

70
C

MATLAB CODE:
B=A(2:3,2:4)
OUTPUT:
B =
 1 5 6
 4 9 10
MATLAB CODE:
C=A(2:3,[1 5])
OUTPUT:
C =
 0 7

3 -5

10

Using MATLAB commands delete 2nd row of the above matrix A and insert the
same row again.

MATLAB CODE:
A(2,:)=[]
A =
 -2 1 4 3 2
 3 4 9 10 -5
x=[0 1 5 6 7];
A=[A(1,:);x;A(2,:)]

Output:
A =
 -2 1 4 3 2

3 1 5 6 7
 3 4 9 10 -5
(iv)Using MATLAB commands delete 3rd and 4th columns of A. Interchange 1st
and 2nd rows of A.
A(:,3:4)=[]
Output:
A =
 -2 1 2
 0 1 7
 3 4 -5
A=[A(2,:); A(1,:); A(3,:)]
Output:
A =
 0 1 7
 -2 1 2
 3 4 -5

4 (i) Create a following matrix






























100000

010000

001000

4259253

49361761

1614412

A





























12020000

0110050

001003

4259253

49361763

1614411

B

(i) Create 3X 3 matrices A and B and find (i) A+B (ii) A-B (iii)A*B (iv) A.*B.

Observe the difference between the operations * and .* . Also find A^2 and A.^2;
A./B, B.\A

MATLAB Code:
clc
P=[2,1,4,4,1,16;-1,6,7,1,36,49;3,5,2,9,25,4];
B=[1,1,4,4,1,16;3,6,7,1,36,49;3,5,2,9,25,4;3,0,0,1,0,0;0,5
,0,10,1,0;0,0,0,20,20,1];
A=[P;[zeros(3),eye(3)]];
disp("A+B=")
disp(A+B)

11

disp("A-B=")
disp(A-B)
disp("A*B=")
disp(A*B)
disp("A.*B=")
disp(A.*B)
disp("A^2=")
disp(A^2)
disp("A.^2=")
disp(A.^2)
disp("A./B=")
disp(A./B)
disp("B.\A=")
disp(B.\A)
Output:
A+B=
 3 2 8 8 2 32
 2 12 14 2 72 98
 6 10 4 18 50 8
 3 0 0 2 0 0
 0 5 0 10 2 0
 0 0 0 20 20 2

A-B=
 1 0 0 0 0 0
 -4 0 0 0 0 0
 0 0 0 0 0 0
 -3 0 0 0 0 0
 0 -5 0 -10 0 0
 0 0 0 -20 -20 0

A*B=
 29 33 23 379 459 113
 41 250 52 1406 1406 355
 51 168 51 374 338 305
 3 0 0 1 0 0
 0 5 0 10 1 0
 0 0 0 20 20 1

A.*B=
 2 1 16 16 1 256
 -3 36 49 1 1296 2401
 9 25 4 81 625 16
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 1

A^2=
 15 28 23 49 139 113
 13 70 52 66 426 355
 7 43 51 44 258 305
 0 0 0 1 0 0

12

 0 0 0 0 1 0
 0 0 0 0 0 1

A.^2=
 4 1 16 16 1 256
 1 36 49 1 1296 2401
 9 25 4 81 625 16
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 1

A./B=
 2.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 -0.3333 1.0000 1.0000 1.0000 1.0000 1.0000
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0 NaN NaN 1.0000 NaN NaN
 NaN 0 NaN 0 1.0000 NaN
 NaN NaN NaN 0 0 1.0000

B.\A=
 2.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 -0.3333 1.0000 1.0000 1.0000 1.0000 1.0000
 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 0 NaN NaN 1.0000 NaN NaN
 NaN 0 NaN 0 1.0000 NaN
 NaN NaN NaN 0 0 1.0000

5

If

















112

211

121

A Using MATLAB commands find dimension of A, determinant of A,

inverse of A, Transpose of A, eigen values and eigen vectors of A.
MATLAB Code:
A=[1 2 1; 1 1 2; 2 1 1];
>> A=[1 2 1; 1 1 2; 2 1 1];
>> det(A)
ans =

 4

>> A'
ans =

 1 1 2
 2 1 1
 1 2 1

>> inv(A)
ans =

 -0.2500 -0.2500 0.7500
 0.7500 -0.2500 -0.2500
 -0.2500 0.7500 -0.2500

13

>> [V D]=eig(A)
V =
 0.5774 + 0.0000i -0.2887 - 0.5000i -0.2887 + 0.5000i
 0.5774 + 0.0000i 0.5774 + 0.0000i 0.5774 + 0.0000i
 0.5774 + 0.0000i -0.2887 + 0.5000i -0.2887 - 0.5000i

D =
 4.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i -0.5000 + 0.8660i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i -0.5000 - 0.8660i

6 Create the following two row vectors: d=[6 -1 4 0 -2 5] and e=[7 5 9 0 1 3].
i. Use the two vectors in a MATLAB command to create a matrix such that the first

row consists of elements 2 through 4 of vector d, the second row consists of
elements 3 through 5 of vector e, and the third row consists of elements 4 through 6
of vector d.

ii. Use the two vectors in a MATLAB command to create a matrix such that the first
column consists of elements 2 through 5 of vector d, and the second column
consists of elements 3 through 6 of vector e.

(i) MATLAB Code:
d=[6 -1 4 0 -2 5] ;
e=[7 5 9 0 1 3];
a=[d(2:4);e(3:5);d(4:6)]
Output:
a =

 -1 4 0
 9 0 1
 0 -2 5
(ii) MATLAB Code:
d=[6 -1 4 0 -2 5] ;
e=[7 5 9 0 1 3];
b=[d(2:5);e(3:6)]
Output:
b =

 -1 4 0 -2
 9 0 1 3

7 Create the following vector: v=[5 0 -3 7 6 -1 2 8 4 9]. Write what will be displayed if
the following commands are executed by MATLAB. Check your answers by executing
the commands with MATLAB.
 (a) a = v([4 5:7 10]) (b) b = v([9, 1, 6:-2:2])' (c) c = [b' a']
MATLAB Code:
v=[5 0 -3 7 6 -1 2 8 4 9];
a = v([4 5:7 10])
b = v([9, 1, 6:-2:2])
c = [b' a']
Output:
a =
 7 6 -1 2 9
b =
 4 5 -1 7 0

14

c =
 4 7
 5 6
 -1 -1
 7 2
 0 9

8 For the function ,4 xexy  calculate the value of y for the following values of x using
element-by-element operations: 1.5, 2, 2.5, 3, 3.5, 4.

 MATLAB:
 x=1.5:0.5:4;
 y=x.^4.*exp(-x)
 Output:

 y =
 1.1296 2.1654 3.2064 4.0328 4.5315 4.6888
9 Use the eye, ones and zeros commands to create the following matrices











10

01
A ,  11B ,


















000

000

000

C Using A,B,C create


















11000

10000

01000

D

MATLAB Code:
A=eye(2)
B=ones(1,2)
C=zeros(3)
D=[C [A;B]]
Output:

A =

 1 0
 0 1

B =

 1 1

C =

 0 0 0
 0 0 0
 0 0 0

D =

 0 0 0 1 0
 0 0 0 0 1
 0 0 0 1 1

15

1
0

Create a Matrix





















420246

321012

444444

2118151296

. Evaluate the following expressions

(a) A=M([1,3],[2,4]) (b) B = M(:,[1,4:6]) (c) C= M([2,3], :)
MATLAB Code:
M=[6,9,12,15,18,21;4.*ones(1,6);2,1,0,-1,-2,-3;-6,-4,-2,0,2,4]
A=M([1,3],[2,4])
B = M(:,[1,4:6])
C= M([2,3], :)
Output:
M =

 6 9 12 15 18 21
 4 4 4 4 4 4
 2 1 0 -1 -2 -3
 -6 -4 -2 0 2 4

A =

 9 15
 1 -1

B =

 6 15 18 21
 4 4 4 4
 2 -1 -2 -3
 -6 0 2 4

C =

 4 4 4 4 4 4
 2 1 0 -1 -2 -3

Outcome: <Write in your own words on learning experience, “what you learn/doing after
completion of this exercise”.>

16

Exercise -3
Writing scripts on MATLAB basics and Programs using functions
Creating and Running Script File: To create scripts files, you need to use a text editor. You
can open the MATLAB editor in two ways:

• Using the command prompt Using the IDE
• If you are using the command prompt, type edit in the command prompt. This will

open the editor. You can directly type edit and then the filename (with .m extension)
edit
Or

edit<filename>
The above command will create the file in default MATLAB directory. If you want to store
all program files in a specific folder, then you will have to provide the entire path. Let us
create a folder named progs. Type the following commands at the command prompt(>>):

Input Command: The input() is used to read the element of a variable.

Output Commands:
(i)The disp Command: The disp command is used to display the elements of a variable
without displaying the name of the variable, and to display text. The format of the disp
command is: disp(name of a variable) or disp(‘text as string’). Every time the disp command
is executed, the display it generates appears in a new line.
(ii) The fprintfCommand:The fprintf command can be used to display output (text and data)
on the screen or to save it to a file. With this command (unlike with the disp command) the
output can be formatted. For example, text and numerical values of variables can be
intermixed and displayed in the same line. In addition, the format of the numbers can be
controlled. With many available options, the fprintf command can be long and complicated.
To avoid confusion, the command is presented gradually. First, this section shows how to use
the command to display text messages, then how to mix numerical data and text, next how to
format the display of numbers, and finally how to save the output to a file.

fprintf(‘text as string %-5.2f additional text’,variable_name)

The formatting elements are: -5.2f

The flag, which is optional, can be done of the following three characters:

The % sign marks the
spot where the
number is inserted
within the text

Formatting elements
(define the format of
the number)

The name of the variable
whose value is displayed

Flag(optional)

Field width
and precision
(optional)

Conversion character

(required)

17

Functions: A function is a group of statements that together perform a task. In MATLAB,
functions are defined in separate files. The name of the file and of the function should be the
same. Functions operate on variables within their own workspace, which is also called the
local workspace, separate from the workspace you access at the MATLAB command prompt
which is called the base workspace. Functions can accept more than one input arguments and
may return more than one output arguments
Syntax of a function statement is:
function [out1,out2, ..., outN] = myfun(in1,in2,in3, ..., inN)

Anonymous Functions: An anonymous function is like an inline function in traditional
programming languages, defined within a single MATLAB statement. It consists of a single
MATLAB expression and any number of input and output arguments. You can define an
anonymous function right at the MATLAB command line or within a function or script. This
way you can create simple functions without having to create a file for them. The syntax for
creating an anonymous function from an expression is f = @(arglist)expression

1. if... end Statement: An if ... end statement consists of an if statement and a boolean

expression followed by one or more statements. It is delimited by the end statement.
Syntax: The syntax of an if statement in MATLAB is:

if <expression>
% statement(s) will execute if the boolean expression is true
<statements>
end

If the expression evaluates to true, then the block of code inside the if statement will be
executed. If the expression evaluates to false, then the first set of code after the end statement
will be executed.

2. if...else...end Statement: An if statement can be followed by an optional else statement,

which executes when the expression is false.
Syntax: The syntax of an if...else statement in MATLAB is:

if <expression>
% statement(s) will execute if the boolean expression is true
<statement(s)
> else
<statement(s)>
%statement(s)will execute if the Boolean expression is false end

If the boolean expression evaluates to true, then the if block of code will be executed,
otherwise else block of code will be executed.

3. for Loop: A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.
Syntax: The syntax of a for loop in MATLAB is:

for index = values
<program statements>

...

end

18

4. while Loop: A while loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute until the condition is true.
Syntax: The syntax of a for loop in MATLAB is:

for index = values
<program statements>

...

end

Loop Control Statements: Loop control statements change execution from its normal
sequence. When execution leaves a scope, all automatic objects that were created in that
scope are destroyed. MATLAB supports the following control statements.

Control Statement Description
break statement Terminates the loop statement and transfers execution to the

statement immediately following the loop.
continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

MATLAB Programs
1 Create a function file to convert temperature in degrees Fahrenheit to degree

Centigrade. (C=(5/9)(F-32)). Use this function to convert 680F to degree centigrade.
MATLAB Code:
function c=f2d(F)
c=(5/9)*(F-32);
Output:
f2d(68)
ans =
 20

2 Create a function to obtain polar coordinates (r,) when Cartesian coordinates (x,y)
are given. The relationship between them is given by the equations: x = r * cos(),
y = r * sin().
MATLAB Code:
function f=p2c(r,t)
x=r*cos(t);
y=r*sin(t);
f=[x,y];
Output:
p2c(3,30)
ans =
 0.4628 -2.9641

3 Create a function file to find factorial of a given positive number.
MATLAB Code:
function f=fct(n)
x=n:-1:1;
f=prod(x);
end
Output:
fct(6)
ans =
 720

19

4
Write a function file(name it chp4one) for the function .

)1(

53
)(

22

4





x

xx
xf The input

to the function is x and the output is f(x). Write the function such that x can be a
vector. Use the function to calculate: (i) f(x) for x=6. (ii) f(x) for x =1,3,5,7,9 and 11.
MATLAB Code:
function f=chap4one(x)
f=(x.*(3.*x+4).^(1./4))./(x.^2+1).^2;
end
Output:
chap4one(6)
ans =
 0.0095
chap4one(1:2:11)
ans =
 0.4066 0.0570 0.0154 0.0063 0.0032 0.0018

5 Write a function file(name it chp4three) for the function .4),(22 yxyxyxf 
The input to the function is x and the output is f(x,y). Use the function to calculate:
(i) f(2,3) (ii) f(x,y) for x =1, y=9
MATLAB Code:
function f=chp4three(x,y)
f=x^2-4*x*y+y^2;
end
Output:
chp4three(2,3)
ans =
 -11
chp4three(1,9)
ans =
 46

6 Write a script file to find the minimum of five numbers
MATLAB Code:
%a script file to find the minimum of five numbers
clc; clear all;
a=input('enter the vector of length 5');
if a(1)>a(2)
 a(1)=a(2);
end
if a(1)>a(3)
 a(1)=a(3);
end
if a(1)>a(4)
 a(1)=a(4);
end
if a(1)>a(5)
 a(1)=a(5);
end
fprintf('the number is %0.0f\n',a(1))
Output:
enter the vector of length 5 [12 32 43 2 22]
the number is 2

20

7 Create a script file to read a number and test whether it is even or not
MATLAB Code:
clc
n = input('enter the value of n: ');
x=mod(n,2);
if x == 1
 fprintf('The given number %d is not even \n', n)
else
 fprintf('The given number %d is even \n', n)
end
Output:
enter the value of n: 34
The given number 34 is even

8 Write a script file to find roots of a given quadratic equation and also displays nature
of roots (Ex: real, equal; real, unequal; imaginary)
MATLAB Code:
clc;
clear all;
%The nature and roots of the quadratic equation
%ax^2+bx+c=0
a=input('enter the coefficient x^2 a=');
if a==0
 fprintf('invalid a\n')
else
b=input('enter the coefficient x b=');
c=input('enter the constant c=');
d=b^2-4*a*c;
if d==0
 fprintf('The roots of the given equation real and
equal\n')
else if d>0
 fprintf('The roots of the given equation real and
unequal\n')
 else
 fprintf('The roots of the given equation
imaginary\n')
 end
end
x1=(-b+sqrt(d))/2*a;
x2=(-b-sqrt(d))/2*a;
disp(x1);
disp(x2);
end

Output:
enter the coefficient x^2 a= 1
enter the coefficient x b=5
enter the constant c=3
The roots of the given equation real and unequal
 -0.6972
 -4.3028

21

enter the coefficient x^2 a= 1
enter the coefficient x b=4
enter the constant c=4
The roots of the given equation real and equal
 -2

 -2

enter the coefficient x^2 a= 1
enter the coefficient x b=1
enter the constant c=1
The roots of the given equation imaginary
 -0.5000 + 0.8660i

 -0.5000 - 0.8660i

9 Write a script file to create a function













otherwise

xifx

xif

xf

,0

21,

1,1

)(2

MATLAB Code:
x=input(‘enter the value of x);
if x<-1
 f=1;
else if x>=-1&&x<=2
 f=x^2;
 else
 f=0;
 end
end
Output:
enter the value of x 23
>> fun4
enter the value of x 23
 0

>> fun4
enter the value of x -1.5
 1

10 Write a script file to calculate area of a circle by taking radius as input and using ‘if-
else statement’. (Note: If negative radius is given, print an error message ‘Invalid
Radius, give a non-negative radius’)
MATLAB Code:
clc;clear all;
%Area of the circle
r=input('Enter the positive radius of a circle R=');
if r<0
 fprintf('Invalid raidus\n')
else
 a=22*r^2/7;
fprintf('Area of the circle is A=%0.4f\n',a);
end

22

Output:
Enter the positive radius of a circle R=-1
Invalid raidus

Enter the positive radius of a circle R= 2.3
Area of the circle is A=16.6257

11 Write a script file to find the sum of the series
ଵ

ଵయ
+

ଵ

ଶయ
+

ଵ

ଷయ
+ ⋯ up to nth term where

n=100, 500.
MATLAB Code:
clc; clear all;
n=input('Enter no of terms in the sequence n =')
sum=0;
for i=1:n
 sum=sum+(1/i^3);
end
fprintf('The sum of the %d terms is %f\n',n,sum)
Output:
Enter no of terms in the sequence n =100
The sum of the 100 terms is 1.202007

Enter no of terms in the sequence n =500
The sum of the 500 terms is 1.202055

12 Write a script file to generate Fibonacci sequence Fn=Fn-1 + Fn-2 using for loop. Find
(i) 5th term (ii) 8th term (iii) sum upto 10th term (iv) product upto 20th term of the
sequence.
MATLAB Code:
clear all; clc
n= input('enter the value of n: ');
fibo = [1,1];
for i=3:n
 fibo(i) = fibo(i-1)+fibo(i-2);
end
fprintf('The Fibonacci sequence is: ')
disp(fibo)
fprintf('enter the nth term of the Fibonacci sequence less than %d: ',n);
k=input('k=');
fprintf('\n The Fibonacci sequence is %d: ',fibo(k))
fprintf('\n The sum of the %d terms of Fibonacci sequence is %d:',n,sum(fibo))
fprintf('\n The product of the %d terms Fibonacci sequence is %d\n: ',n, prod(fibo))
Output:

enter the value of n: 20
The Fibonacci sequence is: Columns 1 through 7

 1 1 2 3 5 8 13

 Columns 8 through 14

 21 34 55 89 144 233 377

 Columns 15 through 20

23

 610 987 1597 2584 4181 6765

enter the nth term of the Fibonacci sequence less than 20: k=5

 The Fibonacci sequence is 5:
 The sum of the 20 terms of Fibonacci sequence is 17710:
 The product of the 20 terms Fibonacci sequence is 9.692987e+36

13 An object thrown vertically with a speed v0 reaches a height h at time t, where

2
0 2

1
gttvh  . Write and test a function that computes the time t required to reach a

specified height h, for a given value of v0. The function’s inputs should be h, v0, and
g. Test your function for the case where h = 100 m, v0 = 50 m/s, and g = 9.81 m/s2.
Interpret both answers.
MATLAB Code:
t=5;
x0=10;
v0=15;
a=-9.81;
x=x0+v0*t+a*(t^2)/2
Output:
x =
 -37.6250

14 A Model for exponential growth or decay of a quantity is given by ,)(0
kteAtA 

where A(t) and A0 are the quantity at time t and time 0, respectively, and k is
constant unique to the specific application. Write the user-defined function A(t) and
calculate the population of a village in the year 2000 when the population of a village
was 67,000 in the year 1980 and 79,000 in the year 1986.
MATLAB Code:
%Model for exponential growth or decay of a quantity
clc;clear;
n0=input('enter the initial year, n0=');
A0=input('enter the intial population, A0=');
n=input('enter the time when the populations is observed after n0,
n=');
A1=input('enter the population when t=n, A1=');
syms k0
k=solve(A1-A0*exp(k0*n));
t=input('enter the time to predict the population t=');
Anew=A0*exp(k*t);
fprintf('the population in the year %d is
%0.0f\n',n0+t,double(Anew));

Output:
enter the initial year, n0=1980
enter the intial population, A0=67000
enter the time when the populations is observed after n0, n=6
enter the population when t=n, A1=79000
enter the time to predict the population t=20
the population in the year 2000 is 116033

24

15 Create a function called cone that computes the volume V of a cone whose height is h
and whose radius is r. (Do not forget to check if a file already exists by that name!)
The volume is given by V=r2h/3 Test case: h = 30, r = 5, V = 785.3982
MATLAB Code:
function v=vol(r,h)
v=pi*r^2*h/3;
end

Output:
vol(5,30)
ans =
 785.3982

Outcome: <Write in your own words on “what you learn/doing after completion of this
exercise”.>

25

Exercise -4
Topic: Symbolic Mathematics
The symbolic Mathematics: For using symbolic Mathematics tools, first write the command
“syms” to variable declaration.

Solving Basic Algebraic Equations in MATLAB: The solve() function is used for solving
algebraic equations. In its simplest form, the ‘solve’ function takes the equation enclosed in
quotes as an argument.

Solving Basic Algebraic Equations: The roots() is used for solving algebraic equations

Expanding and Collecting Equations in MATLAB: The expand() and the collect()
commands expands and collects an equation respectively. The following example
demonstrates the concepts: When you work with many symbolic functions, you should
declare that your variables are symbolic.

Factorization and Simplification of Algebraic Expressions: The factor() function
factorizes an expression and the simplify() function simplifies an expression.

Differentiation: The diff function, when applied to a symbolic expression, provides a
symbolic derivative. diff(E) differentiates a symbolic expression E with respect to its free
variable as determined by find sym.

• diff(E,v) Differentiates E with respect to symbolic variable v.
• diff(E,n) Differentiates E n times for positive integer n.
• diff(E,v,n) Differentiates E n times with respect to symbolic variable v.

Integration: The int function, when applied to a symbolic expression, provides a symbolic
integration. int(E) gives indefinite integral of symbolic expression E with respect to its
symbolic variable as defined by findsym. If E is a constant, the integral is with respect to x.
int(E,v) gives indefinite integral of E with respect to scalar symbolic variable v. int(E,a,b)
gives definite integral of E with respect to its symbolic variable from a to b, where a and b are
each double or symbolic scalars. int(E,v,a,b) gives definite integral of E with respect to v
from a to b.

MATLAB Programs
1 Solve the following linear system of equations: x + 3y -2z = 5, 3x + 5y + 6z = 7,

 2x + 4y + 3z = 8.
MATLAB Code:
clc
syms x y z
e=solve(x + 3*y -2*z == 5, 3*x + 5*y + 6*z == 7, 2*x + 4*y + 3*z ==
8);
fprintf('x=%f,y=%f,z=%f\n',double(e.x),double(e.y),double(e.z))
Output:
x=-15.000000,y=8.000000, z=2.000000

2 Use suitable MATLAB command to expand the expression
(x+1.4)(x-0.4)x(x+0.6)(x-1.4)
MATLAB Code:
clc
syms x
expand((x+1.4)*(x-0.4)*x*(x+0.6)*(x-1.4))
Output:
ans =

26

x^5 + x^4/5 - (11*x^3)/5 - (49*x^2)/125 + (294*x)/625

3 Use MATLAB command to multiply the polynomials 2x2+3, x3+3.5x2+5x-16
MATLAB Code:
clc
syms x
expand((2*x^2+3)*(x^3+3.5*x^2+5*x-16))
Output:
ans =
 2*x^5 + 7*x^4 + 13*x^3 - (43*x^2)/2 + 15*x - 48

4 Factorise the following polynomials using MATLAB command
(a) x2-x-6 (b) x3+2x2+3x+2 (c) (x4 -2x3 +3x2 -4x +5) 3

MATLAB Code:
clc
syms x
factor(x^2-x-6)
factor(x^3+2*x^2+3*x+2)
factor((x^4 -2*x^3 +3*x^2 -4*x +5)^3)
Output:
ans =

[x + 2, x - 3]

 ans =

[x + 1, x^2 + x + 2]

ans =
 [x^4 - 2*x^3 + 3*x^2 - 4*x + 5, x^4 - 2*x^3 + 3*x^2 - 4*x + 5, x^4 - 2*x^3 + 3*x^2 -
4*x + 5]

5 Find the roots of the following equations:
(a) x4 + x3 - 43x2 + 23x + 210 = 0 (b) 2x4 = 5 (c) x10-x-1 = 0
MATLAB Code:
clc; clear;
syms x
solve(x^4 + x^3 - 43*x^2 + 23*x + 210==0)
solve(2*x^4 - 5==0)
solve(x^10-x-1==0)
Output:
ans =
 -7
 -2
 3
 5

ans =
 -(2^(3/4)*5^(1/4))/2
 (2^(3/4)*5^(1/4))/2
 -(2^(3/4)*5^(1/4)*1i)/2
 (2^(3/4)*5^(1/4)*1i)/2

27

ans =
 root(z^10 - z - 1, z, 1)
 root(z^10 - z - 1, z, 2)
 root(z^10 - z - 1, z, 3)
 root(z^10 - z - 1, z, 4)
 root(z^10 - z - 1, z, 5)
 root(z^10 - z - 1, z, 6)
 root(z^10 - z - 1, z, 7)
 root(z^10 - z - 1, z, 8)
 root(z^10 - z - 1, z, 9)
 root(z^10 - z - 1, z, 10)

6 Find the derivatives of the following functions using MATLAB commands
(a) 3t2 + 2/t2 (b) (x+2)(x2+3) (c) (sin2x)(cos2x) (d) (x2-4) / (x+5)(2x3+5)
MATLAB Code:
clc; clear;
syms x t
a=diff(3*t^2 + 2/t^2)%the derivate of (a)
b=diff((x+2)*(x^2+3))%the derivate of (b)
c=diff(sin(2*x)*cos(2*x))%the derivate of (c)
d=diff((x^2-4)/((x+5)*(2*x^3+5)))%the derivate of (d)
Output:
a =
 6*t - 4/t^3
 b =
 2*x*(x + 2) + x^2 + 3
c =
 2*cos(2*x)^2 - 2*sin(2*x)^2
 d =
 (2*x)/((2*x^3 + 5)*(x + 5)) - (x^2 - 4)/((2*x^3 + 5)*(x + 5)^2) - (6*x^2*(x^2 -
4))/((2*x^3 + 5)^2*(x + 5))

7 Evaluate the following integrals using MATLAB command

(a) dx
x

x


 2

3

1
 (b) dxxx cos2 (c) dxxe x  5sin2 (d) dx

xx

x
 


)7)(3(

4
2

2

MATLAB Code:
clc
syms x
a=int(x^3/sqrt(1-x^2))%integral of (a)
b=int(x^2*cos(x))%integral of (b)
c=int(exp(-2*x)*sin(5*x))%integral of (c)
d=int((x^2+4)/((x^2-3)*(x+7)))%integral of (d)
Output:
a =
 -((1 - x^2)^(1/2)*(x^2 + 2))/3
 b =
 sin(x)*(x^2 - 2) + 2*x*cos(x)
 c =
 -(exp(-2*x)*(5*cos(5*x) + 2*sin(5*x)))/29
 d =
 (53*log(x + 7))/46 - log(x + 3^(1/2))*((49*3^(1/2))/276 + 7/92) + log(x -
3^(1/2))*((49*3^(1/2))/276 - 7/92)

Outcome:<Write in your own words on learning experience, “what you learn/doing after
completion of this exercise”.>

Topic: Programs on Root Finding:

(1) Bisection method:

This method is useful to find the root
and b. If f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs then the
root lies in between a and b. Let f(a) be negative and f(b) be positive. Then the first

approximation to the root is x1=
(

root lies between a and x1 or x1

bisect the interval as before and continue the process until the root is found to d
accuracy.

If f(x1) is +ve, so that the root lies between a and x

root is x2=
(௔ା୶భ)

ଶ
 . If f(x2) is

approximation to the root is x3 =

(2) Method of false position or Regula
 Let us consider an equation of the form f (x) = 0 and we choose two points x
such that f(x0) and f (x1) are of opposite signs i.e., the graph of y = f (x) crosses the x
between these points. This indicates that a root lies between x
(x1) < 0.

x =
୶బ௙(௫భ)ି௫భ ୤(୶బ)

௙(௫భ)ି௙(௫బ)

The next approximation root is x

Now if f(x0) and f(x2) are of opposite signs, then the root lies between x
by x2. The next approximation is x
desired accuracy.

28

Exercise -5
Programs on Root Finding:

This method is useful to find the root of an equation f (x) = 0 which lies between a
and b. If f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs then the
root lies in between a and b. Let f(a) be negative and f(b) be positive. Then the first

(௔ା௕)

ଶ
 . If f(x1) = 0, then x1 is a root of f(x) = 0. Otherwise, the

1 and b according as f(x1) is positive or negative. Then we
bisect the interval as before and continue the process until the root is found to d

) is +ve, so that the root lies between a and x1. Then the second approximation to the

) is - ve, the root lies between x1 and x2. Then the third

=
(୶భା ௫మ)

ଶ
and so on.

(2) Method of false position or Regula-falsi method:
Let us consider an equation of the form f (x) = 0 and we choose two points x

) are of opposite signs i.e., the graph of y = f (x) crosses the x
tween these points. This indicates that a root lies between x0 and x1 consequently f(x

The next approximation root is x2 =
୶బ௙(௫భ)ି௫భ ୤(୶బ)

௙(௫భ)ି௙(௫బ)

) are of opposite signs, then the root lies between x0 andx2

next approximation is x3. This procedure is repeated till the root is found to

of an equation f (x) = 0 which lies between a
and b. If f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs then the
root lies in between a and b. Let f(a) be negative and f(b) be positive. Then the first

is a root of f(x) = 0. Otherwise, the

) is positive or negative. Then we
bisect the interval as before and continue the process until the root is found to desired

. Then the second approximation to the

. Then the third

Let us consider an equation of the form f (x) = 0 and we choose two points x0 and x1
) are of opposite signs i.e., the graph of y = f (x) crosses the x-axis

consequently f(x0) f

2, replacing x1
. This procedure is repeated till the root is found to

29

1. Write a MATLAB Code to find the locations of the roots of the given equations.
MATLAB Code:

%A script file to the find the location of the roots
clc; clear;
syms x
f=input('enter the equation f(x)=0,f(x)=');
x_min=input('enter the lower limit, xmin=');
x_max=input('enter the upper limit, xmax=');
for k=x_min:x_max
 if subs(f,x,k)*subs(f,x,k-1)<0
 x1=k-1;
 x2=k;
 break;
 end

end
fprintf('the requird root lies between x1=%d and x2=%d\n',x1,x2);

Output:
enter the equation f(x)=0,f(x)=x^3-5*x+5
enter the lower limit, xmin=-10
enter the upper limit, xmax=10
the requird root lies between x1=-3 and x2=-2

2. Write a MATLAB code to find the root of the equation by using Bisection method and
Test Case find the root of the equation x3-3x +5=0.

MATLAB CODE USING WHILE:
%A script file for Bisecton Method
clc; clear;
syms x
f=input('enter the equation f(x)=0,f(x)=');
x_min=input('enter the lower limit, xmin=');
x_max=input('enter the upper limit, xmax=');
for k=x_min:x_max
 if subs(f,x,k)*subs(f,x,k-1)<0
 x1=k-1;
 x2=k;
 break;
 end

end
fprintf('the requird root lies between x1=%d and
x2=%d\n',double(x1),double(x2));
xnew=1;
i=0;
fprintf('x1\t x2\t f(x)\t\n');
while abs(subs(f,x,xnew))>0.0001
 xnew=(x1+x2)/2; %bisection formula
 fprintf('%0.4f\t %0.4f\t
%0.4f\t\n',double(x1),double(x2),double(subs(f,x,xnew)));
 if subs(f,x,x1)*subs(f,x,xnew)<0
 x2=xnew;
 else
 x1=xnew;
 end
 i=i+1;

end
fprintf('the number of iterations is i=%d\n',i);
fprintf('the requird root is x=%0.4f\n',xnew);

30

Output:
enter the equation f(x)=0,f(x)=x^3-3*x+5
enter the lower limit, xmin=-10
enter the upper limit, xmax=10
the requird root lies between x1=-3 and x2=-2
x1 x2 f(x)
-3.0000 -2.0000 -3.1250
-2.5000 -2.0000 0.3594
-2.5000 -2.2500 -1.2715
-2.3750 -2.2500 -0.4290
-2.3125 -2.2500 -0.0281
-2.2813 -2.2500 0.1673
-2.2813 -2.2656 0.0700
-2.2813 -2.2734 0.0211
-2.2813 -2.2773 -0.0035
-2.2793 -2.2773 0.0088
-2.2793 -2.2783 0.0026
-2.2793 -2.2788 -0.0004
-2.2791 -2.2788 0.0011
-2.2791 -2.2789 0.0003
-2.2791 -2.2790 -0.0000
the number of iterations is i=15
the requird root is x=-2.2790

MATLAB Code using for loop:

%A script file for finding the location of the roots
clear all; clc;
syms x
f=input('Enter the f(x) of the equation f(x)=0\n f(x)=');
%xmax=input('Enter the maximum value');
y(1)=subs(f,x,-10);
k=2;
for i=-10:1:10
 k=k+1;
 y(k)=subs(f,x,i);
 if y(k)*y(k-1)<0
 fprintf('The required root lies between x1=%d and x2=%d\n',i-1,i);
 x1=i-1;x2=i;
 break
 end
end
fprintf('i \tx1 \t x2 \t f\n')
 for i = 1: 100
 xh =(x1+x2)/2; % bisection
 if subs(f,x,x1)*subs(f,x,xh) < 0
 x2 = xh;
 else

31

 x1 = xh;
 end
 fprintf('%d \t %-1.4f \t %-1.4f \t %-1.4f\n',i,x1,x2,subs(f,x,xh))
 if abs(subs(f,x,xh)) < 0.0001
 break
 end
end
fprintf('The root: %-1.4f\nThe number of Iterations: %d\n',x1,i)

Output
Enter the f(x) of the equation f(x)=0
 f(x)=x^3-3*x+5
The required root lies between x1=-3 and x2=-2
i x1 x2 f
1 -2.5000 -2.0000 -3.1250
2 -2.5000 -2.2500 0.3594
3 -2.3750 -2.2500 -1.2715
4 -2.3125 -2.2500 -0.4290
5 -2.2813 -2.2500 -0.0281
6 -2.2813 -2.2656 0.1673
7 -2.2813 -2.2734 0.0700
8 -2.2813 -2.2773 0.0211
9 -2.2793 -2.2773 -0.0035
10 -2.2793 -2.2783 0.0088
11 -2.2793 -2.2788 0.0026
12 -2.2791 -2.2788 -0.0004
13 -2.2791 -2.2789 0.0011
14 -2.2791 -2.2790 0.0003
15 -2.2790 -2.2790 -0.0000
The root: -2.2790

The number of Iterations: 15

32

3. Write a MATLAB code to find real root of the equation by False position method and
Test Case find the root of the equation x3-3x +5=0.

MATLAB Code:
%A script file for Regula falsi Method
clc; clear;
syms x
f=input('enter the equation f(x)=0,f(x)=');
x_min=input('enter the lower limit, xmin=');
x_max=input('enter the upper limit, xmax=');
for k=x_min:x_max
 if subs(f,x,k)*subs(f,x,k-1)<0
 x1=k-1;
 x2=k;
 break;
 end

end
fprintf('the requird root lies between x1=%d and
x2=%d\n',double(x1),double(x2));
xnew=1;
i=0;
fprintf('x1\t x2\t f(x)\t\n');
while abs(subs(f,x,xnew))>0.0001
 xnew=(x1*subs(f,x,x2)-x2*subs(f,x,x1))/(subs(f,x,x2)-subs(f,x,x1));
%Regula Falsi formula
 fprintf('%0.4f\t %0.4f\t
%0.4f\t\n',double(x1),double(x2),double(subs(f,x,xnew)));
 if subs(f,x,x1)*subs(f,x,xnew)<0
 x2=xnew;
 else
 x1=xnew;
 end
 i=i+1;

end
fprintf('the number of iterations is i=%d\n',i);
fprintf('the requird root is x=%0.4f\n',double(xnew));

Output:
enter the equation f(x)=0,f(x)=x^3-3*x+5
enter the lower limit, xmin=-10
enter the upper limit, xmax=10
the requird root lies between x1=-3 and x2=-2
x1 x2 f(x)
-3.0000 -2.0000 1.0950
-3.0000 -2.1875 0.3518
-3.0000 -2.2506 0.1084
-3.0000 -2.2704 0.0329
-3.0000 -2.2764 0.0100
-3.0000 -2.2782 0.0030
-3.0000 -2.2788 0.0009
-3.0000 -2.2789 0.0003
-3.0000 -2.2790 0.0001
the number of iterations is i=9
the requird root is x=-2.2790

Outcome:<Write in your own words on learning experience, “what you learn/doing
after completion of this exercise”.>

33

Exercise -6
Topic: Programs on Root Finding:

(1) Iteration method:
Let us consider an equation f(x) = 0
Express f(x) as x = ø(x) such that |∅ூ(𝑋)|< 1
Let the initial solution be x0 for f(x)
The next approximations are x1 = ø(x0)
 x2 = ø(x1)
 x3 = ø(x2)
 .
 .
 xn+1 = ø(xn), where n = 0, 1 , 2 ,…
The above formula is called as Iteration formula.
Note: The iteration formula can be applied only if ø(x) is converges i.e, |∅ூ(𝑋)|< 1.
(2) Newton - Raphson method:
 Let us consider an equation of the form f (x) = 0 and x0 be an approximate root of the
equation f(x) = 0.

∴ The first approximation is x1 = x0−
୤(୶బ)

୤′(୶బ)

The second approximation is x2 = x1−
୤(୶భ)

୤′(୶భ)

 In general, xn+1 = x1−
୤(୶౤)

୤′(୶౤)

This is known as the Newton-Raphson formula or Newton’s iteration formula.

1. Write a MATLAB code to find a real root of the equation by Iteration Method and Test

Case find the root of the equation x3-5x +5=0
MATLAB Code:

% A Script file for Iterative Method
clear all; clc;
syms x
f=input('Enter the f(x) of the equation f(x)=0 where\n f(x)=');
%xnew=input('Enter the intial approximation');
y(1)=subs(f,x,-10);
k=2;
for i=-10:1:10
 k=k+1;
 y(k)=subs(f,x,i);
 if y(k)*y(k-1)<0
 fprintf('The required root lies between x1=%d and x2=%d\n',i-1,i);
 x1=i-1;x2=i;
 break
 end
end
f=input('Enter the f(x) of the equation x=f(x)where\n f(x)=');
max_itr=input('Enter the maximum number of iterations');
%tol=input('Enter the tolerance');
tol=0.0001;
xnew=x1;
df=diff(f,x);

34

fprintf('The iterations are:\n')
while abs(subs(df,x,xnew))>=1
 fprintf('The given function does not converge\n')
 xnew=input('Enter another intial approximation');
end
for i=1:max_itr
 xold=xnew;
 xnew=subs(f,x,xnew);
 err=abs(xold-xnew);
 if (err>tol)
 fprintf('%d->x%d=%f\n',i,i,xnew)
 else
 break
 end

end
fprintf('The required root is x =%10.6f\n',xnew)

Output
Enter the f(x) of the equation f(x)=0 where
 f(x)=x^3-3*x-5
The required root lies between x1=2 and x2=3
Enter the f(x) of the equation x=f(x)where
 f(x)=(3*x+5)^(1/3)
Enter the maximum number of iterations 10
The iterations are:
1->x1=2.223980
2->x2=2.268372
3->x3=2.276967
4->x4=2.278624
5->x5=2.278943
The required root is x = 2.279004
The root is 2.094544

2. Write a MATLAB code to find real root of the equation by Newton-Raphson method and
Test Case find the root of the equation x sin x + cos x=0.

MATLAB Code:

Program:
%A script file for finding a real roots using newton raphson method
clear all;clc;
syms x
f=input('enter the function f(x) corresponding to the equation f(x)=0\n f(x)=');
k=1;
x_min=-10;%input('enter the starting value');
x_max=10;%input('enter the final value');
y(1)=subs(f,x,x_min);
for i=x_min:1:x_max
 k=k+1;
 y(k)=subs(f,x,i);
 if y(k)*y(k-1)<0

35

 fprintf('The required root lies between\n x1=%d, x2=%d\n',i,i-1)
 xnew=i;
 break
 end
end
df=diff(f,x);
for i=1:100
 xold=xnew;
 xnew=xnew-subs(f,x,xnew)/subs(df,x,xnew);
 if (abs(xold-xnew)>0.0001)
 fprintf('%d->x%d=%f\n',i,i,xnew)
 else
 break
 end

 end
fprintf('the required root is %f \n ',xnew)

Output
enter the function f(x) corresponding to the equation f(x)=0
 f(x)=x^3-3*x+5
The required root lies between
 x1=-2, x2=-3
1->x1=-2.333333
2->x2=-2.280556
3->x3=-2.279020
the required root is -2.279019

Outcome:
<Write in your own words on

“what you learn/doing after completion of this exercise”.>

36

Exercise -7
Topic: Program on Interpolation:

(1) Newton’s Forward Interpolation Formula: Let y0, y1, ...,yn be the values of f(x)
corresponding to the arguments x0, x0+h, x0+2h,..., x0+nh, with equally spaced, then
the Newton’s forward interpolation polynomial y (x) is y(x) = y0 + p Δy0 +
௣(௣ିଵ)

ଶ
∆ଶy0 +

௣(௣ିଵ)(௣ିଶ)

ଷ!
∆ଷy0 +

௣(௣ିଵ)(௣ିଶ)(௣ିଷ)

ସ!
∆ସy0 + …, Where p =

௫ି௫బ

௛

(2) Newton’s backward interpolation formula: Let y0, y1, ...,yn be the values of f(x)
corresponding to the arguments x0, x1, ...,xn with equally spaced, then the Newton’s

backward interpolation polynomial y (x) is y(x) = yn + p ∇yn +
௣(௣ାଵ)

ଶ
∇ଶyn +

௣(௣ାଵ)(௣ାଶ)

ଷ!
∇ଷyn +

௣(௣ାଵ)(௣ାଶ)(௣ାଷ)

ସ!
∇ସyn + …, where p =

௫ି௫೙

௛

(3) Lagrange’s interpolation formula (interpolation with unevenly spaces points):
Let y0, y1, ...,yn be the values of f(x) corresponding to the arguments x0, x1, ...,xn with
not necessarily equally spaced, then the Lagrange’s interpolation polynomial is

y(x) =
(௫ି௫భ)(௫ି௫మ)(௫ି௫య)…(௫ି௫೙)

(௫బି௫భ)(௫బି௫మ)(௫బି௫య)…(௫బି௫೙)
 f(x0) +

(௫ି௫బ)(௫ି௫మ)(௫ି௫య)…(௫ି௫೙)

(௫భି௫బ)(௫భି௫మ)(௫భି௫య)…(௫భି௫೙)
 f(x1) +

(௫ି௫బ)(௫ି௫భ)(௫ି௫య)…(௫ି௫೙)

(௫మି௫బ)(௫మି௫భ)(௫మି௫య)…(௫మି௫೙)
f(x2) + … +

(௫ି௫బ)(௫ି௫భ)(௫ି௫మ)…(௫ି௫೙షభ)

(௫೙ି௫బ)(௫೙ି௫భ)(௫೙ି௫మ)…(௫೙ି௫೙షభ)
 f(xn)

1 Write a MATLAB code to find the unknown value for the given data by using Newton’s

forward difference formula and test case: find y(1.5) for the data

MATLAB Code:

Program:
clear all; clc;
% Script for Newton's Forward Interpolation formula.
% x and y are two Row Matrices and p is point of interpolation
% Example
% >> x=[10,20,30,40,50]
% >> y=[-9,-41,-189,9,523]
% here h=10;
x=input('enter the row vector x');
y=input('enter the row vector y');
p=input('enter the unknown x');
h=input('enter the length');
n = length(x);
a(1) = y(1);
for k = 1 : n - 1
 d(k, 1) = (y(k+1) - y(k));
end
for j = 2 : n - 1
 for k = 1 : n - j
 d(k, j) = (d(k+1, j - 1) - d(k, j - 1));
 end
end
d
for j = 2 : n

x 0 1 2 3 4
y 3 6 11 18 27

37

 a(j) = d(1, j-1);
end
Df(1) = 1;
c(1) = a(1);
for j = 2 : n
 Df(j)=(p - x(j-1)) .* Df(j-1);
 c(j) = a(j) .* Df(j)/(factorial(j-1)*h^(j-1));
end
fp=sum(c);
fprintf('The required y value at x=%f is %f',p,fp);

Output:
enter the row vector x0:4
enter the row vector y[3 6 11 18 27]
enter the unknown x1.5
enter the length1

d =

 3 2 0 0
 5 2 0 0
 7 2 0 0
 9 0 0 0

The required y value at x=1.500000 is 8.250000

2. Write a MATLAB code to find the unknown value for the given data by using Newton’s

backward difference formula and test case to the following problem. The population of a
town in the decimal census was given below. Estimate the population for the year 1925
using Newton.s Backward Interpolation formula

MATLAB Code:

Program:

clear all; clc;
% Script for Newton's Forward Interpolation formula.
% x and y are two Row Matrices and p is point of interpolation
% Example
% x=100:50:400;
% y=[10.63,13.03,15.04,16.81,18.42,19.90,21.27];
% h=50;
% p=410;
% here h=10;
x=input('enter the row vector x');
y=input('enter the row vector y');
p=input('enter the unknown x');
h=input('enter the length');

Year x 1891 1901 1911 1921 1931
Population y
(thousands)

46 66 81 93 101

38

n = length(x);
a(1) = y(n);
for k = 1 : n - 1
 d(k, 1) = (y(k+1) - y(k));
end
for j = 2 : n - 1
 for k = 1 : n - j
 d(k, j) = (d(k+1, j - 1) - d(k, j - 1));
 end
end
d
for j = 2 : n-1
 a(j) = d(n-j+1, j-1);% delta y0, delta^2 y0,...
end
Df(1) = 1;
c(1) = a(1);
for j = 2 : n-1
 Df(j)=(p - x(n+2-j)) .* Df(j-1);
 c(j) = a(j) .* Df(j)/(factorial(j-1)*h^(j-1));
end
fp=sum(c);

fprintf('The required y value at x=%f is %f\n',p,fp);
Output:
enter the row vector x 1891:10:1931
enter the row vector y [46,66,81,93,101]
enter the unknown x 1925
enter the length10

d =

 20 -5 2 -3
 15 -3 -1 0
 12 -4 0 0
 8 0 0 0

The required y value at x=1925.000000 is 96.736000

39

3. Write a MATLAB code to find the unknown value for the given data by using using
Lagrange’s interpolation formula and test case to evaluate f(10) given f(x) = 168, 192, 336 at
x = 1, 7, 15 respectively using Lagrange’s interpolation formula.

MATLAB Code:
Program:

clear all; clc;

x=input('enter the column matrix x');
y=input('enter the column matrix y with the same dimension of x');
a=input('enter the unknown');;
% Coefficients of the Lagrange interpolating polynomial.
n=length(x);
p=0;
for k=1:n
 b(k)=1;
 d(k)=1;
 for j=1:n
 if j~= k
 b(k)=b(k)*(x(k)-x(j));
 d(k)=d(k)*(a-x(j));
 end
 end
 c(k)=y(k)/b(k);
 p=p+c(k)*d(k);
end
fprinitf(‘The coefficients of Lagrange’s Polynomial are ’, c)
fprintf('\n p(a)= %10.6f',p)
fprintf('\n')
Output:
enter the column matrix x
[1;5;7]
enter the column matrix y with the same dimension of x
[168;192;336]
enter the unknown
10
c =
 7 -24 28
 p(a)= 717.000000

Output:
Outcome:<Write in your own words on learning experience, “what you learn/doing
after completion of this exercise”.>

Outcome:

40

Exercise -8
Topic: Program on Numerical Integration:
Numerical integration: The process of evaluating a definite integral from a set of tabulated
values of the integrand f(x) is called numerical integration. This process when applied to a
function of a single variable is known as quadrature.
Trapezoidal Rule:

∫ 𝑓(𝑥)
௕

௔
dx =

௛

ଶ
[(y0 + yn) +2 (y1 + y2 + y3 + y4 +.. + yn-1)]

Simpson's One-Third Rule:

∫ 𝑓(𝑥)
௕

௔
dx =

௛

ଷ
 [(y0 + yn) +4 (y1 + y3 + .. + yn-1) + 2(y2 + y4+ .. + yn-2)]

Simpson's Three-Eighth Rule:

∫ 𝑓(𝑥)
௕

௔
dx =

ଷ௛

଼
 [(y0 + yn) + 3 (y1 + y2 +y4 + .. + yn-1) + 2(y3 + y6+ .. + yn-3)]

(1) Write a MATLAB code to evaluate definite integral using Trapezoidal rule and test case:

evaluate ∫
ௗ௫

ଵା௫

ଵ

଴
.

MATLAB Code:

Program:
clear all; clc;
%Trapezoidal rule
f=input('Enter the function f(x)=@(x)1/(1+x)\nf(x)=');
a = input('\nEnter the lower limit of the integral\na=');
b = input('\nEnter the upper limit of the integral\nb=');
n = input('\nEnter the number of interval \n n=');
h = (b - a)/n;
s = f(a)+f(b);
for i = 1:n-1
 s = s + 2*f(a+i*h);
end
I = h/2 * s;
fprintf('\n The requried integral value is%10.4f\n',I)

Output:
Enter the function f(x)=@(x)1/(1+x)
f(x)=@(x)1/(1+x)
Enter the lower limit of the integral
a=0
Enter the upper limit of the integral
b=1
Enter the number of interval
 n=6
 The requried integral value is 0.6949

41

(2) Write a MATLAB code to evaluate definite integral using Simpson's 1/3rd rule and test

case: evaluate  
1

0

31 dxx by using Simpson's 1/3 rule.

MATLAB Code:
Program:
clear all; clc;
% A script file for Simpson's1/3rd rule
f=input('Enter the function f(x)=@(x)1/(1+x)\nf(x)=');
a = input('\nEnter the lower limit of the integral\na=');
b = input('\nEnter the upper limit of the integral\nb=');
n = input('\nEnter the number of interval \n n=');
h = (b - a)/n;
s = f(a)+f(b);
for i = 1:2:n-1
 s = s + 4*f(a+i*h);
end
for i = 2:2:n-2
 s = s + 2*f(a+i*h);
end
I = h/3 * s;
fprintf('\n The requried integral value is I=%10.4f\n',I)

Output:
Enter the function f(x)=@(x)1/(1+x)
f(x)=@(x)sqrt(1+x^3)

Enter the lower limit of the integral
a=0

Enter the upper limit of the integral
b=1

Enter the number of interval
 n=10

 The requried integral value is I= 1.1114

42

(3) Write a MATLAB code to evaluate definite integral using Simpson's 3/8th rule and test

case: evaluate  
1

0

41 dxx .

MATLAB Code:
Program:
clear all; clc;
% A script file for Simpson's 3/8 th rule
f=input('Enter the function f(x)=@(x)1/(1+x)\nf(x)=');
a = input('\nEnter the lower limit of the integral\na=');
b = input('\nEnter the upper limit of the integral\nb=');
n = input('\nEnter the number of interval \n n=');
h = (b - a)/n;
s = f(a)+f(b);
for i = 1:3:n-1
 s = s + 3*f(a+i*h);
end
for i = 2:3:n-1
 s = s + 3*f(a+i*h);
end
for i = 3:3:n-1
 s = s + 2*f(a+i*h);
end
I = 3*h/8 * s;
fprintf('\n The requried integral value is I=%10.4f\n',I)

Output:
Enter the function f(x)=@(x)1/(1+x)
f(x)=@(x)sqrt(1+x^4)
Enter the lower limit of the integral
a=0
Enter the upper limit of the integral
b=1
Enter the number of interval
 n=6
 The requried integral value is I= 1.0894

Outcome:
<Write in your own words on learning experience, “what you learn/doing after
completion of this exercise”.>

43

Exercise -9
Topic: Program on Numerical Solutions of Ordinary Differential Equations:
Euler’s method:
The numerical solution of the differential equation

ௗ௬

ௗ௫
 = f(x,y), given the initial condition y (x0) = y0

The Euler’s formula is y୬ାଵ = y୬ + h f(x୬ + y୬), n = 0, 1, 2, … ..
Modified Euler’s method:
Consider the numerical solution of the differential equation
ௗ௬

ௗ௫
 = f(x,y), given the initial condition y (x0) = y0

To find y(x1) = y1: put x = x1 = x0 + h

𝑦ଵ
(଴)

= 𝑦଴ + ℎ𝑓(𝑥଴, 𝑦଴)

𝑦ଵ
(ଵ)

= 𝑦଴ +
ℎ

2
 [𝑓(𝑥଴, 𝑦଴) + 𝑓ቀ𝑥ଵ, 𝑦ଵ

(଴)
ቁ]

𝑦ଵ
(ଶ)

= 𝑦଴ +
ℎ

2
 [𝑓(𝑥଴, 𝑦଴) + 𝑓ቀ𝑥ଵ, 𝑦ଵ

(ଵ)
ቁ]

𝑦ଵ
(ଷ)

= 𝑦଴ +
ℎ

2
 [𝑓(𝑥଴, 𝑦଴) + 𝑓ቀ𝑥ଵ, 𝑦ଵ

(ଶ)
ቁ]

--

𝑦ଵ
(௞ାଵ)

= 𝑦଴ +
ℎ

2
 [𝑓(𝑥଴, 𝑦଴) + 𝑓ቀ𝑥ଵ, 𝑦ଵ

(௞)
ቁ]

If any two successive values of 𝑦ଵ
(௞)

, 𝑦ଵ
(௞ାଵ)are sufficiently close to one another, we will take

the common value as y1.
To find y(x2) = y2: put x = x2 = x1 + h
We use the above procedure again.

Runge – Kutta methods (RK methods):

Second order RK method:𝑦ଵ = 𝑦଴ +
ଵ

ଶ
(𝑘ଵ + 𝑘ଶ)

 Where 𝑘ଵ = ℎ𝑓(x଴, y଴)
 𝑘ଶ = ℎ𝑓(x଴ + h, y଴ + 𝑘ଵ)

Third order RK method:𝑦ଵ = 𝑦଴ +
ଵ

଺
(𝑘ଵ + 4𝑘ଶ + 𝑘ଷ)

 Where 𝑘ଵ = ℎ𝑓(x଴, y଴)

 𝑘ଶ = ℎ𝑓 ቀx଴ +
୦

ଶ
, y଴ +

௞భ

ଶ
ቁ

 𝑘ଷ = ℎ𝑓(x଴ + h, y଴ + 2𝑘ଶ − 𝑘ଵ)
Fourth order RK method:𝑦ଵ = 𝑦଴ +

ଵ

଺
(𝑘ଵ + 2𝑘ଶ + 2𝑘ଷ + 𝑘ସ)

 Where 𝑘ଵ = ℎ𝑓(x଴, y଴)

 𝑘ଶ = ℎ𝑓 ቀx଴ +
୦

ଶ
, y଴ +

௞భ

ଶ
ቁ

 𝑘ଷ = ℎ𝑓 ቀx଴ +
୦

ଶ
, y଴ +

௞మ

ଶ
ቁ

 𝑘ସ = ℎ𝑓(x଴ + h, y଴ + 𝑘ଷ)

44

1. Write a MATLAB code to find the value of y at particular value of x for solving
ordinary differential equation using Euler’s method and test case find y at x = 1.2
taking step size h = 0.3 for the given IVP y' = x2- y2, y(0) = 1.

MATLAB Code:
%A script file for Eulers method
clear all; clc
f=input('enter the function @(x,y)@(x,y)(x^3+x*y^2)*exp(-x)\nf(x,y)=');
x=input('\nenter the intial value of x\n x0=');
y=input('\nenter the intial value of y\n y0=');
h=input('\nenter the step length h\n h=');
xn=input('\nenter unknown value of x\n xn=');
n=(xn-x)/h;
for i=1:n
 y=y+h*f(x,y);
 fprintf('The value of y(%0.1f)= %0.4f\n',x+h,y);
 x=x+h;
end

Output:
enter the function @(x,y)@(x,y)(x^3+x*y^2)*exp(-x)
f(x,y)=@(x,y)x^2-y^2
enter the intial value of x
 x0=0
enter the intial value of y
 y0=1
enter the step length h
 h=0.3
enter unknown value of x
 xn=1.2
The value of y(0.3)= 0.7000
The value of y(0.6)= 0.5800
The value of y(0.9)= 0.5871
The value of y(1.2)= 0.7267

45

2. Write a MATLAB code to find the value of y at particular value of x for solving
ordinary differential equation using Modified Euler’s method and test case find the
value of y(0.2), y(0.4) for the given IVP y' = y + e୶, y(0) = 0,

MATLAB Code:
Program:
%A script file for Modified Eulers method
clear all; clc
f=input('enter the function @(x,y)@(x,y)(x^3+x*y^2)*exp(-x)\nf(x,y)=');
x=input('\n enter the intial value of x \n x0=');
y=input('\nenter the intial value of y\n y0=');
h=input('\nenter the step length h\n h=');
xn=input('\n enter unknown value of x\n xn=');
n=(xn-x)/h;
for i=1:n
 fprintf('Step=%d \n',i)
 %Eulers method
 fprintf('Eulers method...........\n')
 y1=y+h*f(x,y);
 fprintf('The value using Eulers method of y(%0.1f)= %0.4f\n',x+h,y);
 x1=x+h;
 disp('Modified Eulers Method.............')
 fprintf('S.No. x \ty \n')
 y1_old=10000;j=0;
 while(abs(y1_old-y1)>=0.0001)
 j=j+1;
 y1_old=y1;
 y1=y+(h/2)*(f(x,y)+f(x1,y1));
 fprintf(' %d \t\t%0.1f \t\ty(%0.1f)= %0.4f\n',j,x1,x1,y1);
 end
 x=x1;y=y1;
 disp('---------------------------------------')
end
--
output:
enter the function @(x,y)@(x,y)(x^3+x*y^2)*exp(-x)
f(x,y)=@(x,y)x^2-y^2
 enter the intial value of x
 x0=0
enter the intial value of y
 y0=1
enter the step length h
 h=0.3
 enter unknown value of x
 xn=1.2
Step=1
Eulers method...........

46

The value using Eulers method of y(0.3)= 1.0000
Modified Eulers Method.............
S.No. x y
 1 0.3 y(0.3)= 0.7900
 2 0.3 y(0.3)= 0.7699
 3 0.3 y(0.3)= 0.7746
 4 0.3 y(0.3)= 0.7735
 5 0.3 y(0.3)= 0.7738
 6 0.3 y(0.3)= 0.7737

Step=2
Eulers method...........
The value using Eulers method of y(0.6)= 0.7737
Modified Eulers Method.............
S.No. x y
 1 0.6 y(0.6)= 0.6935
 2 0.6 y(0.6)= 0.6793
 3 0.6 y(0.6)= 0.6822
 4 0.6 y(0.6)= 0.6816
 5 0.6 y(0.6)= 0.6817
 6 0.6 y(0.6)= 0.6817

Step=3
Eulers method...........
The value using Eulers method of y(0.9)= 0.6817
Modified Eulers Method.............
S.No. x y
 1 0.9 y(0.9)= 0.7241
 2 0.9 y(0.9)= 0.7088
 3 0.9 y(0.9)= 0.7121
 4 0.9 y(0.9)= 0.7114
 5 0.9 y(0.9)= 0.7116
 6 0.9 y(0.9)= 0.7115

Step=4
Eulers method...........
The value using Eulers method of y(1.2)= 0.7115
Modified Eulers Method.............
S.No. x y
 1 1.2 y(1.2)= 0.8765
 2 1.2 y(1.2)= 0.8579
 3 1.2 y(1.2)= 0.8627
 4 1.2 y(1.2)= 0.8615
 5 1.2 y(1.2)= 0.8618
 6 1.2 y(1.2)= 0.8617

47

3. Write a MATLAB code to find the value of y at particular value of x for solving

ordinary differential equation using Runge – Kutta method fourth order and test obtain
the values of y at x = 0.1, 0.2 for the differential equation y' =x+y, y(0) = 1 when h=0.1.

MATLAB Code:
Program:
% RK-4th order Method for solving first order differential equation
clear all; clc;
%dydx=@(x,y)(x+y);
dydx=input('enter the inline function eg @(x,y)(x+y):---->');
x0=input('Enter x0=');
y0=input('Enter y0=');
h=input('Enter h=');
x_new=input('Enter the unknown x=');
n=(x_new-x0)/h;
x1=x0;
y1=y0;
fprintf('x y\n ')
for i=1:n
k1=h*dydx(x1,y1);
k2=h*dydx(x1+h/2,y1+k1/2);
k3=h*dydx(x1+h/2,y1+k2/2);
k4=h*dydx(x1+h,y1+k2);
k=(k1+2*k2+2*k3+k4)/6;
y1=y1+k;
x1=x1+h;
fprintf('%0.1f %0.4f\n',x1,y1)
end
Output:

Enter x0=0
Enter y0=1
Enter h=0.1
Enter the unknown x=0.4
x y
 0.1 1.1103
0.2 1.2428
0.3 1.3997
0.4 1.5836

Outcome:<Write in your own words on learning experience, “what you learn/doing
after completion of this exercise”.>

48

Exercise -10
Topic: MATLAB Solvers for differential equations.

The MATLAB command dsolve computes symbolic solutions to ordinary differential
equations.
Syntax
dsolve('eq1','eq2',...,'cond1','cond2',...,'v')
Description
dsolve('eq1','eq2',...,'cond1','cond2',...,'v') symbolically solves the ordinary differential
equations eq1, eq2,... using v as the independent variable. Here cond1,cond2,... specify
boundary or initial conditions or both. You also can use the following syntax:
dsolve('eq1, eq2',...,'cond1,cond2',...,'v').
The default independent variable is t.

1. Write the MATLAB Code for solving   sin 21 cos . cosxdy
y x e x

dx
  

MATLAB Code:
syms y(t)

ode = diff(y,t)+(y-1)*cos(t) == exp(-sin(t))*(cos(t))^2

ySol(t) = dsolve(ode)

Output:
ode(t) =

 diff(y(t), t) + cos(t)*(y(t) - 1) == exp(-sin(t))*cos(t)^2

 ySol(t) =

 exp(-sin(t))*(t/2 + sin(2*t)/4 + exp(sin(t))) + C1*exp(-sin(t))

2. Write the MATLAB Code for solving 0)sectan(1 
dx

dy
yyx .

Rewriting the given differential equation, then we get

0)sectan( yyx
dy

dx

MATLAB Code:
syms y(t)

ode2 = diff(y,t) +(y*tan(t)-sec(t)) == 0

dsolve(ode2)

Output:
ans =
cos(t)*tan(t) + C1*cos(t)

49

3. Write the MATLAB Code for solving Solve
𝒅𝟒𝒚

𝒅𝒙𝟒 + 𝟖
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝟏𝟔𝒚 = 𝟎.

MATLAB Code:
syms y(t)
ode3 = diff(y,t,4) + 8*diff(y,t,2)+16*y == 0
dsolve(ode3

Output:
ans =

 C1*cos(2*t) - C3*sin(2*t) + C2*t*cos(2*t) - C4*t*sin(2*t)

4. Write the MATLAB Code for solving Solve (𝑫 + 𝟐)(𝑫 − 𝟏)𝟐𝒚 = 𝟐 𝐬𝐢𝐧 𝒉𝒙.
(𝑫𝟑 − 𝟑𝑫 + 𝟐)𝒚 = 𝟐 𝐬𝐢𝐧 𝒉𝒙.

MATLAB Code:
syms y(x)
ode3 = diff(y,x,3) - 3*diff(y,x)+2*y == 2*sinh(x)
dsolve(ode3)

Output:
ans =

 exp(x)/27 - exp(-x)/4 + (x^2*exp(x))/6 + C1*exp(x) - (x*exp(x))/9 + C3*exp(-2*x) +
C2*x*exp(x)

5. Write the MATLAB Code for solving Solve 𝒚′′′ − 𝟔 𝒚′′ + 𝟏𝟏𝒚′ − 𝟔𝒚 = 𝟎, where

𝒚(𝟎) = 𝟎, 𝒚′(𝟎) = 𝟎, 𝒚′′(𝟎) = 𝟐.

MATLAB Code:
syms y(x)
ode5 = diff(y,x,3) - 6*diff(y,x,2)+11*diff(y,x)-6*y == 0;
Dy=diff(y,x);D2y=diff(y,x,2);
cond=[y(0)==0,Dy(0)==0,D2y(0)==2];
dsolve(ode5,cond)
Output:

ans =

 exp(3*x) - 2*exp(2*x) + exp(x)

Outcome:<Write in your own words on learning experience, “what you learn/doing
after completion of this exercise”.>

50

Exercise -11
Topic: MATLAB Code for solving engineering problems

MATLAB CODES

1. Write the MATLAB Code for the following problem: The initial value problem
governing the current i flowing in series R, L circuit when voltage v(t) = t is applied is

given by . Find the current i(t)at time t.

MATLAB Code:
syms i(t) R L
lrc= R*i+L*diff(i,t)==t;
sol=dsolve(lrc,i(0)=0)

Output:

sol =

 t/R - (L - L*exp(-(R*t)/L))/R^2

2. Write the MATLAB Code for the following problem: An emf E = 200 e-5t is applied to a

series circuit consisting of 20 ohms resistor and 0.01 farad capacitor . Find the charge and

current at any time if there is no initial charge on capacitor.

E
C

q

dt

dq
R 

,q(0)= 0

MATLAB Code:

clear all; clc

syms q(t) R L

C=0.01; R=20;

rc= R*diff(q,t)+q/C==200*exp(-5*t);

sol=dsolve(rc,q(0)==0)

Output:

sol =

 10*t*exp(-5*t)

, 0
di

Ri L t t
dt

  

51

3. Write the MATLAB Code for the following problem: If the air is maintained at 150C and

the temperature of the body drops from 700C to 400C in 10 minutes. What will be its

temperature after 30 minutes

MATLAB Code:

syms T(t) k
nlc1=diff(T,t)==k*(T-15);
cond=T(0)==70;
sol(t)=dsolve(nlc1,cond)
k=solve(sol(10)==40)
nlc1=diff(T,t)==k1*(T-15);
cond=T(0)==70;
sol(t)=dsolve(nlc1,cond)
 Output:
sol(t) =

 55*exp((t*log(5/11))/10) + 15

Outcome:
<Write in your own words on learning experience,“what you learn/doing after
completion of this exercise”.>

52

axis ([xmin xmax ymin ymax])

subplot(m, n, p)

Exercise -12

Topic:Two-Dimensional Plots.
PLOTTING

Steps to plot the graph of a function
1. Define x, by specifying the range of values for the variable x, for which the function is

to be plotted
2. Define the function, y = f(x)
3. Call the plot command, as plot(x, y)

Adding Title, Labels, Grid Lines, and Scaling on the Graph:

• MATLAB allows you to add title, labels along the x-axis and y-axis, grid lines and
also to adjust the axes to spruce up the graph.

• The xlabel and ylabel commands generate labels along x-axis and y-axis. The title
command allows you to put a title on the graph.

• The grid on command allows you to put the grid lines on the graph.
• The axis equal command allows generating the plot with the same scale factors and

the spaces on both axes.
• The axis square command generates a square plot.

Setting Colors on Graph:
MATLAB provides eight basic color options for drawing graphs. The following table shows
the colors and their codes:

Code Color
w White
k Black
b Blue
r Red
c Cyan
g Green
m Magenta
y Yellow

Setting Axis Scales:
The axis command allows you to set the axis scales. You can provide minimum and
maximum values for x and y axes using the axis command in the following way:

Generating Sub-Plots:
When you create an array of plots in the same figure, each of these plots is called a subplot.
The subplot command is used for creating subplots.
Syntax for the command is:

where, m and n are the number of rows and columns of the plot array and p specifies
where to put a particularplot.

53

1. Write a MATLAB code to create Two-Dimensional Plots and customize the plot.

MATLAB Code:

%A script file to plot the graph of the function y=x^2
clc; clear;
x=input('Enter the values of x in vector form');
a=input('Minimum value on x-axis, a=');
b=input('Maximum value on x-axis b=');
c=input('Minimum value on y-axis c=');
d=input('Maximum value on y-axis d=');
y=x.^2;
plot(x,y,'.-')
title('The graph of the parabola'), xlabel('x-axis'), ylabel('y-
axis'),axis([a b c d])

Output:

Enter the values of x in vector form [0, 2, 5, 9, 11]
Minimum value on x-axis, a=0
Maximum value on x-axis b=12
Minimum value on y-axis c=0
Maximum value on y-axis d=125

54

2. Write a MATLAB code to create Two-Dimensional Plots and customize the plot.
MATLAB Code:

x = [0:0.01:10];
y = sin(x);
plot(x, y), xlabel('x'), ylabel('Sin(x)'), title('Sin(x)
Graph'),
grid on, axis equal

55

3. Write a MATLAB code to create Multiple Functions on the Same Graph and customize

the plot.

MATLAB CODE:

x = [0 : 0.01: 10];
y =sin(x);
g =cos(x);
plot(x, y, x, g, '.-'), legend('Sin(x)', 'Cos(x)')

Output:

Outcome:
<Write in your own words on learning experience, “what you learn/doing after
completion of this exercise”.>

